Sparse Quantile Huber Regression for Efficient and Robust Estimation
نویسندگان
چکیده
We consider new formulations and methods for sparse quantile regression in the high-dimensional setting. Quantile regression plays an important role in many applications, including outlier-robust exploratory analysis in gene selection. In addition, the sparsity consideration in quantile regression enables the exploration of the entire conditional distribution of the response variable given the predictors and therefore yields a more comprehensive view of the important predictors. We propose a generalized OMP algorithm for variable selection, taking the misfit loss to be either the traditional quantile loss or a smooth version we call quantile Huber, and compare the resulting greedy approaches with convex sparsityregularized formulations. We apply a recently proposed interior point methodology to efficiently solve all convex formulations as well as convex subproblems in the generalized OMP setting, provide theoretical guarantees of consistent estimation, and demonstrate the performance of our approach using empirical studies of simulated and genomic datasets.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملRobust inference in high- dimensional approximately sparse quantile regression models
This work proposes new inference methods for the estimation of a regression coefficientof interest in quantile regression models. We consider high-dimensional models where the number ofregressors potentially exceeds the sample size but a subset of them suffice to construct a reasonableapproximation of the unknown quantile regression function in the model. The proposed methods are<lb...
متن کاملEstimation of high dimensional mean regression in the absence of symmetry and light tail assumptions.
Data subject to heavy-tailed errors are commonly encountered in various scientific fields. To address this problem, procedures based on quantile regression and Least Absolute Deviation (LAD) regression have been developed in recent years. These methods essentially estimate the conditional median (or quantile) function. They can be very different from the conditional mean functions, especially w...
متن کاملEstimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales)
Abstract. In this paper, a technique is presented for assessing the predictive uncertainty of rainfall-runoff and hydraulic forecasts. The technique conditions forecast uncertainty on the forecasted value itself, based on retrospective Quantile Regression of hindcasted water level forecasts and forecast errors. To test the robustness of the method, a number of retrospective forecasts for differ...
متن کاملFactorisable Sparse Tail Event Curves
In this paper, we propose a multivariate quantile regression method which enables localized analysis on conditional quantiles and global comovement analysis on conditional ranges for high-dimensional data. The proposed method, hereafter referred to as FActorisable Sparse Tail Event Curves, or FASTEC for short, exploits the potential factor structure of multivariate conditional quantiles through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.4624 شماره
صفحات -
تاریخ انتشار 2014